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EXPERIMENTAL STUDY OF THE REVERSE FLOW IN THE FORWARD
SEPARATION REGION IN A PULSATING FLOW AROUND A SPIKED BODY

V. 1. Zapryagaev and I. N. Kavun UDC 534.13:533.6.011.5

The flow with a free-stream Mach number My, = 6 around a cylindrical body with a sharp spike
is studied. The existence of a supersonic reverse flow for one of the phases of the pulsating flow
regime is experimentally validated. A range of spike lengths is determined, which ensures a region of
a supersonic reverse flow near the side surface of the spike. The time of existence of the supersonic
reverse flow region is shown to be 0.15 of the period of pulsations if the spike length equals the model
diameter.
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Introduction. A supersonic gas flow around a spiked blunt body is accompanied by the emergence of a
flow with a forward separation region. At certain geometric and gas-dynamic parameters, there arises a periodic
self-oscillatory flow. Two types of such a flow are distinguished, depending on the spike length. In the oscillatory
flow regime, the conical shock wave bounding the separation region performs small periodic transverse oscillations.
The shape of the wave remains essentially unchanged. Figures la and 1b show the flow structures for two typical
phases of oscillations.

As the spike length is reduced, the amplitude of oscillations increases, and a certain value of the amplitude
gives rise to the pulsating flow regime. At this moment, the shape of the separation region becomes essentially
different. Typical structures of the flow for two phases are shown in Figs. 1c and 1d. As the pulsating process
evolves, the volume of the separation region increases, the conical wave transforms to a hemispherical one, and then
the separation region disappears because the flow rate of the gas escaping from the separation region is significantly
greater than the flow rate of the incoming gas. After this phase of pulsations is completed, a new separation zone
bounded by a conical shock wave appears, and the entire process is periodically repeated. Such a flow regime, which
was first discovered by Mair (see [1]), is considered in the present paper.

This problem has been studied in many experimental and theoretical investigations (see, e.g., [2-6]). The
physical pattern of such a flow, however, has not been adequately addressed, which necessitates further research.

According to [4, 6], the main reason for origination of a pulsating flow regime is the formation of an annular
supersonic jet J (Fig. 1c) at the point T' of intersection of the conical shock wave W, and the bow shock wave Wj.
The mechanism responsible for the emergence of a pulsating flow is as follows. A high-velocity gas flow behind a
weak shock wave W, moves in the form of an annular jet J in the region between this wave and the separation-region
boundary toward the body on which this flow is impinging. Because of jet curving toward the model centerline, the
gas predominantly enters the separation region. The size of this region increases, which converts the conical shock
wave W, into the detached curved shock wave W7. At a certain stage of development of the pulsating process, the
increase in the radial size of the separation region makes the diameter of the annular jet J greater than the cylinder
diameter D. The incoming flow ceases to add the high-pressure gas into the separation region, and the pressure
in the separation region decreases. As a result, the bow shock wave W is attenuated and entrained downstream.
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Fig. 1. Oscillatory (a and b) and pulsating (¢ and d) flow regimes.

Another weak shock W, arises again near the spike tip subjected to a supersonic gas flow, and conditions for
formation of a new separation region are created. The mechanism of mass-flow oscillations is described in more
detail for a free-stream Mach number My, = 2 in [4].

It was believed before now that gas viscosity exerts a significant effect on the characteristics of an unsteady
pulsating process. Such a flow could be obtained only by solving the Navier-Stokes equations (see, e.g., [3]).
Babarykin et al. [5], however, proved that this problem could be solved by the Euler equations. Moreover, some
specific features of the process evolution, which had not been described in previous publications, were discovered in
[5]. In particular, the possibility of existence of a supersonic flow in the forward separation region was noted.

The objective of the present work is to refine the physical features of flow pulsations in high-velocity su-
personic flows and to compare these features with available mechanisms of pulsations corresponding to moderate
supersonic velocities.

Experimental Equipment and System of Flow Visualization. The experiment was performed in a
T-326 hypersonic wind tunnel of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the
Russian Academy of Sciences (Fig. 2a). The nozzle-exit diameter was 200 mm.

The model to be tested was a spiked cylinder (Fig. 2b). The cylinder diameter was D = 50 mm, the spike
length was L = 50 mm, the spike diameter was d = 8 mm, and the cone half-angle of the spike tip was ¢ = 10°.
A gauge for measuring pressure pulsations was flush-mounted on the frontal face of the cylinder at a distance
h =0.8R =20 mm (R = D/2) from the cylinder centerline.

The free-stream Mach number was Mo, = 6.08. The pressure in the settling chamber was 9.81 - 10° Pa,
the temperature in the settling chamber was 110°C, the dynamic pressure was ¢ = 15 - 103 Pa, and the Reynolds
number per meter was Re; = 1.27- 107 m~*.

The schlieren pictures of the flow were taken by an TAB-451 shadowgraph. A source of light was placed
onto the collimator part of the instrument, and a CCD camera was located on the detector part. The pictures were
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Fig. 2. Sketch of the test facility (a) and geometric parameters of the model (b): 1) wind-tunnel nozzle; 2) test
section; 3) diffuser; 4) model to be tested; 5) window for flow visualization.

taken with a frequency 30 frames per second. A straight sheet in the vertical position was used. The exposure time
was determined by the duration of the light pulse and amounted to 2 usec.

A piezoresistor gauge of pressure pulsations was used in the experiment. The range of measurements was
—100 to 60 kPa, and the frequency range was 0 to 100 kHz. The outer diameter of the gauge was 3.3 mm.

In addition to experiments with the model described above, we also performed experiments under the same
conditions with a spike length 27.5 < L < 72.5 mm. The flow character remained essentially unchanged in this range
of spike lengths. At L > 72.5 mm, the pulsating flow regime transformed to the oscillatory mode. At spike lengths
L < 27.5 mm, the flow character was not studied. In further discussions, the experimental data are presented for
L/D =1, if not indicated otherwise.

Technique of Registration of Self-Sustained Pulsations in Time. In the course of the experiment,
we simultaneously recorded the values measured by the pressure gauge (mounted at a distance h = 0.8R from the
model centerline) and the time instants when the instantaneous schlieren pictures were taken. As the process under
study is quasi-periodic, we could obtain a sequence of photographs illustrating one cycle of self-sustained pulsations,
using the parameter 7 = (t —to)/7T,. For this purpose, we calculated the relative time of obtaining each photograph
Tr = (ty —to)/Tq (t is the time, T, = t; — to, where o and ¢; are the times of the beginning and end of the cycle
of self-sustained pulsations, and t¢ is the time when the photograph was taken). Thus, the condition ¢y <t < ¢ is
described by the inequality 0 < 7 < 1. The beginning (7 = 0) of the cycle of self-sustained pulsations is assumed to
be the time when the bow shock wave is located near the spike tip (see Fig. 1d). The equipment and the technique
used to construct the sequence of photographs were described in more detail in [7].

For the geometric and gas-dynamic parameters of the experiment used, the mean period of the cycle of
self-sustained pulsations is 7T, = 334 usec. The root-mean-square deviation from the mean value of the period is
Ts = 2.08%.

Figure 3 shows a cycle of self-sustained pulsations and the averaged oscillogram of pressure fluctuations
on the frontal face of the cylinder, which was registered by the pressure gauge. The points on the oscillogram
correspond to times when the displayed photographs were taken. At M., = 6, the mechanism of self-sustained
pulsations observed is consistent with the mechanism of self-sustained pulsations at Mo, = 2 [4]. The photographs
corresponding to the time interval 0 < 7 < 0.4 show the motion of the bow shock wave W; toward the frontal face
of the cylinder. A conical shock wave W, is formed on the spike tip, with a forward separation region behind this
wave. The time interval 0.4 < 7 < 1.0 covers the development of the separation zone, its subsequent emptying,
and formation of a new bow shock wave at the spike tip. The first maximum in the oscillogram corresponds to the
moment when the shock wave W; approaches the frontal face of the cylinder, and the second maximum refers to
the moment when the high-pressure annular jet J passes near the pressure gauge, as the separation region expands.

Research Results. One of the little-studied features of the pulsating flow regime is the presence of a local
supersonic reverse flow region near the side surface of a sharp spike.
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Fig. 3. Cycle of self-sustained pulsations in the time interval 0 < 7 < 1 and oscillogram of pressure
fluctuations.
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Let us consider the possibility of existence of such a flow. At the time 7 = 0.64, the pressure gauge registers
the second maximum of pressure p; = 52 kPa (see Fig. 3). According to [8], this maximum is caused by a supersonic
high-pressure annular jet passing near the gauge; the existence of this jet was established in [4, 6]. When the jet
becomes decelerated on the frontal face of the cylinder, an annular zone with elevated near-wall pressure is formed
on the surface of the frontal face of the cylinder. As the radial size of the separation region increases, this zone
expands, and a local pressure maximum appears on the oscillogram. It should be noted that there is a significant
difference in pressure at this moment inside the separation region between the zone near the frontal face of the
cylinder and the zone near the spike tip.

Let us estimate the velocity of the reverse flow induced by this pressure difference. Let the maximum value
of the total pressure in the annular jet in the time interval 0.4 < 7 < 0.7 (time of increasing of the radial size of
the separation region from the moment the bow shock approaches the frontal face of the cylinder to the moment of
separation-region emptying) be approximately constant. As the jet becomes decelerated on the frontal face of the
cylinder, the static pressure near the cylinder surface becomes equal to the near-wall pressure recorded by the gauge
and reaches p; = 52 kPa. The flow velocity near the frontal face of the cylinder equals zero, and the temperature
equals the temperature in the settling chamber (393 K).

Let the pressure inside the separation region at the initial time (7 = 0.4) be equal to the pressure behind the
conical shock wave near the spike tip with an angle of inclination to the axis 8 = 19° (p2 = 3 kPa), the temperature
be equal to the temperature behind the conical wave (82 K), and the flow velocity be zero.

Thus, there is a discontinuity in flow parameters near the frontal face of the cylinder and the spike tip at
the initial time. This discontinuity is unstable and decomposes into a shock wave moving toward the spike tip and
an expansion wave moving toward the frontal face of the cylinder. Solving the problem of discontinuity decay in a
one-dimensional formulation (paper [9] was involved) implies that the velocity of shock-wave motion is 425 m/sec
and the velocity of the gas behind the shock wave is 290 m/sec. The Mach number is M = 1.14 for the gas between
the shock wave and the contact discontinuity separating the shock and expansion waves and M = 0.85 for the gas
between the contact discontinuity and the tail of the expansion wave.

When the gas flow reaches the spike tip, a curved shock wave is formed near the latter; the shape of this
wave is close to planar. We assume that the flow inside the separation region will become steady in the next phase
of the cycle of self-sustained pulsations. The gas parameters near the frontal face of the cylinder remain constant,
and the pressure near the spike tip corresponds to the pressure behind the normal shock wave (p2 = 26.8 kPa).
Then, the flow Mach number near the spike tip, calculated by the formula for a one-dimensional steady isentropic
flow (in the indicated time interval 0.4 < 7 < 0.7) is My = 1.02. As the resultant Mach number is close to unity,
such an estimate admits a time interval where a local supersonic reverse flow region near the side surface of the
spike can exist.

The photographs that refer to the time interval 0.76 < 7 < 0.91 (see Fig. 3) display a narrow dark region
near the inflection where the conical part of the spike transforms to the cylindrical part (marked by an arrow). As
the dark and light areas in the schlieren pictures correspond to an increase and decrease in density, respectively,
in the direction from left to right, the region observed is either an expansion wave if the gas moves from the spike
tip toward the frontal face of the cylinder or a compression wave (shock wave) if the gas moves upstream from the
frontal face of the cylinder.

Let us consider the time evolution of self-sustained pulsations. The origin (7 = 0) is assumed to be the
phase of pulsations corresponding to the minimum pressure at the frontal face of the cylinder (see the oscillogram
of pressure fluctuations in Fig. 3). As the bow shock wave W7 moves toward the frontal face of the cylinder, a
conical shock wave W, is formed near the spike tip; the angle between the wave and the axis varies from § = 38°
(tr =0.01) to 8 =19° (7 = 0.39). For a non-separated flow around a cone with an apex half-angle ¢ = 10°, the
angle of inclination of the attached conical wave should be 5. = 14.5°. As § > (. for 0 < 7 < 0.4, there is a
separation region Z near the spike tip during this time interval. The flow structure near the spike tip with the
bow shock wave W) moving toward the frontal face of the cylinder is shown in the schlieren picture (7 = 0.25)
corresponding to this phase of process evolution (Fig. 4a). At the time 7 = 0.25, the value 8 = 20.5° corresponds
to the flow around the cone with ¢ = 16.5° without separation. The schlieren picture has a dark line (marked by
an arrow) between the conical wave W, and the spike surface; the angle of wave inclination to the axis is p. = 16°.
This line corresponds to the mixing layer between the boundary layer separated from the spike tip and the reverse
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Fig. 4. Schlieren pictures and corresponding simplified patterns of the flow: (a) phase of formation of
the separation region (0 < 7 < 0.34); (b) phase of separation-region filling by a strongly turbulized
gas flow (0.34 < 7 < 0.59), W1 is the bow shock wave, W, is the conical shock wave, Wr is the
shock wave forming a triple configuration together with the waves Wi and W¢, T is the triple point
(resulting from interaction of the shock waves Wi, W,, and Wr), W1 is the wave bounding the
zone Z', AB is the segment where the wave W/ is a shock wave and BO is the segment where
the wave W1 is a compression wave, S; is the mixing layer, S. is the contact surface between the
gas flow behind the wave W1 and the gas flow behind the wave Wi, J is the annular jet, Z is the
separation zone behind the conical shock wave W., Z’ is the zone of a strongly turbulized gas, (3 is
the angle between the conical shock wave W, and the spike centerline, and ¢. is the angle between
the mixing layer Si and the spike centerline.

flow region near the spike surface. The flow pattern shows the mixing layer S; dividing two regions of the gas flow
in the zone Z (the region of the separated flow behind the conical shock wave W, and the reverse flow region near
the spike surface), the shock waves Wy, W, and W, which form a triple configuration, and the contact surface S,
between the gas flow behind the shock wave W and the gas flow behind the wave W;. Thus, the flow near the side
surface of the spike at this time interval is directed from the frontal face of the cylinder toward the spike tip.
Figure 4b shows the flow pattern corresponding to the phase 0.34 < 7 < 0.59 of the cycle of self-sustained
pulsations. When the wave W approaches the frontal face of the cylinder, an annular high-enthalpy supersonic
gas jet J is formed near the line of intersection of the waves W7 and W¢; this jet is an unsteady axisymmetric
analog of interaction of shock waves of the fourth type in Edney’s classification [6]. The possibility of formation
of such a flow structure at Mo, = 6 was first demonstrated in [6]. This assumption was validated experimentally
in [6, 8]. The jet J impinges onto the frontal face of the cylinder; some part of the gas flow passes outward, while
the other part of the gas flow penetrates into the zone Z and forms the zone Z’ of a strongly turbulized flow (the
so-called gas plug), which is clearly visible in the photograph taken at the time 7 = 0.39. As the gas plug Z’ moves
toward the spike tip, the wave W/ is formed ahead of the gas plug; this wave may be considered as consisting of two
segments: AB and BO. On the segment AB, the wave W] is a shock wave, because the supersonic gas flow ahead
of the front of this wave moves toward the turbulized gas flow “reflected” from the frontal face of the cylinder. On
the segment BO, the wave W/ is a compression wave (the gas from the zone Z’ catches up with the gas from the
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Fig. 5. Position of the contact point O of the wave W{ and the side surface of the spike with respect
to the spike tip at different times.

zone Z). The wave W] moves from the frontal end of the cylinder toward the spike tip, and the zone Z’ gradually
displaces the zone Z. At the time 7 = 0.59, the wave W] reaches the spike tip, the zone Z’ completely displaces
the zone Z, and the wave W, transforms to the wave W7.

Figure 5 shows the position of the point O, which is the contact point of the frontal surface of the high-pressure
gas plug (i.e., contact point of the wave W{) and the side surface of the spike at different times. The z coordinate
corresponds to the position of the point O with respect to the spike tip. The straight line approximating the
experimentally registered positions of the point O at different times was used to calculate the mean velocity of its
motion along the spike surface. According to experimental data, the velocity of the point O from the frontal face
of the cylinder to the spike tip is Vo = 335 m/sec. Apparently, the gas-flow velocity on the right of the point O is
transonic and will be supersonic in the next phase of the cycle of self-sustained pulsations (see below).

The free stream impinging on the spike tip collides with the reverse supersonic flow from the zone Z’, which
leads to emergence of radial motion of the gas and a new wave W; (see Fig. 3; 7 = 0.59 and 0.61) present in the
next cycle of self-sustained pulsations.

After that, the gas moving in the radial direction turns again and flows downstream, covering the head part
of the separation zone Z' (Fig. 6). The gas moving along the spike surface from the frontal face of the cylinder
toward the spike tip turns and becomes compressed. A local supersonic flow region bounded by the shock wave W
is formed near the spike surface.

Figure 7 shows the emergence (7 = 0.71) and evolution of the wave Wy (marked by an arrow) at different
times. Its radial size is seen to increase in time, and its intensity decreases at the final stage; as a result, the shock
wave degenerates into a compression wave (because the difference in pressure between the spike tip and the frontal
face of the cylinder decreases).

The assumption that the reverse flow velocity near the spike surface is supersonic is confirmed by Fig. 8,
which shows the wave W, (marked by an arrow) for different values of the spike length L. For L = 70 mm
(L/D = 1.4), the velocity of the point O was determined as Vo = 500 m/sec. For the experimental parameters
used, the gas velocity behind the point O is supersonic; therefore, the wave Wy is a shock wave. As the spike
length is reduced, the velocity of the point O decreases [in the case L/D = 1, it equals 335 m/sec (see Fig. 5)].
For a dimensionless spike length L/D = 0.85, the wave W can still be seen in the photographs (see Fig. 8); for
L/D = 0.8, the wave disappears. As the flow structure in the corresponding phase of the cycle of self-sustained
pulsations remains essentially unchanged for different spike lengths, we can assume that there is a local supersonic
reverse flow region near the side surface of the spike in this phase of the cycle of self-sustained pulsations in the
entire range of the values 0.85 < L/D < 1.45 where the wave W is observed. For L/D = 1, the time of existence
of this region is 0.76 < 7 < 0.91, i.e., 50 usec.

The increase in reverse flow velocity near the spike surface with increasing spike length can be explained as
follows. For a longer spike, the angle of inclination of the wave W, to the axis at the moment when the wave W3
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Fig. 6. Schlieren picture and simplified pattern of the flow with a supersonic flow region located
near the side surface of the spike between the shock wave W, and the frontal face of the cylinder.

T=0.71 7=0.84 T=0.87 7=10.91

Fig. 8. Schlieren pictures with the shock wave W for different spike lengths.
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approaches the frontal face of the cylinder is smaller than that for a shorter spike. The total pressure loss behind
such a wave is smaller; hence, a greater pressure is generated near the frontal face of the cylinder by the jet J being
decelerated on the frontal face of the cylinder. Simultaneously, the pressure behind the wave W, near the spike tip
is smaller, because the angle of inclination of the conical wave W, to the axis decreases with increasing L/D. Thus,
the pressure difference between the frontal face of the cylinder and the spike tip increases with increasing L/D;
hence, the reverse flow velocity also increases.

Conclusions. The experiment performed allowed refining the structure of the reverse flow in the forward
separation region for a free-stream Mach number M, = 6. This zone is shown to appear near the spike tip from
the moment when the bow shock wave W; starts moving toward the frontal face of the cylinder. The existence
of a local supersonic zone in the forward separation region in one of the phases of the self-oscillatory process is
validated. For L/D = 1, the local supersonic flow region exists in the time interval 0.76 < 7 < 0.91. For the model
with a sharp spike (¢ = 10°), a region of a supersonic reverse flow is registered near the side surface of the spike
for 0.85 < L/D < 1.45.
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